f2(x, y) -> g2(x, y)
g2(h1(x), y) -> h1(f2(x, y))
g2(h1(x), y) -> h1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
f2(x, y) -> g2(x, y)
g2(h1(x), y) -> h1(f2(x, y))
g2(h1(x), y) -> h1(g2(x, y))
G2(h1(x), y) -> G2(x, y)
F2(x, y) -> G2(x, y)
G2(h1(x), y) -> F2(x, y)
f2(x, y) -> g2(x, y)
g2(h1(x), y) -> h1(f2(x, y))
g2(h1(x), y) -> h1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
G2(h1(x), y) -> G2(x, y)
F2(x, y) -> G2(x, y)
G2(h1(x), y) -> F2(x, y)
f2(x, y) -> g2(x, y)
g2(h1(x), y) -> h1(f2(x, y))
g2(h1(x), y) -> h1(g2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(h1(x), y) -> G2(x, y)
G2(h1(x), y) -> F2(x, y)
Used ordering: Polynomial interpretation [21]:
F2(x, y) -> G2(x, y)
POL(F2(x1, x2)) = 2·x1 + 2·x1·x2
POL(G2(x1, x2)) = x1 + x1·x2
POL(h1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F2(x, y) -> G2(x, y)
f2(x, y) -> g2(x, y)
g2(h1(x), y) -> h1(f2(x, y))
g2(h1(x), y) -> h1(g2(x, y))